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Abstract. Modern airplanes have a large number of interconnected avionic systems that need an accurate and confi-

dent real-time fault detection/isolation (FDI) monitor in central maintenance systems (CMS) for possible malfunc-

tions or abnormalities. Model-based diagnosis, which compares predicted behaviour with actual behaviour, is used 

for efficient analysis of maintenance data for FDI. This paper investigates the different types of model-based fault de-

tection/isolation approaches according to type of aircraft. The importance of real-time (in-flight) diagnosis is dis-

cussed.  
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1. Introduction 

Having an overall look at aircraft systems or analyzing a 

system to locate a faulty component started to be very 

difficult when avionic systems became more complicated 

and interrelated. This complexity increased the workload 

for flight crews and maintenance personnel for diagnos-

ing faults.  

It is essential to locate the root cause of a fault while 

many other interconnected subsystems may also give 

fault indications that may possibly hide the root cause. 

Therefore aircraft computers use diagnostic approaches 

that collect data from sensors and computers to analyze 

for fault diagnosis.  

Presently, nearly all-diagnostic approaches for engi-

neering systems are based on model-based diagnosis rely-

ing on practical experiences in the past (Console, Dreiser 

1999). According to the completeness of the model, 

model-based diagnosis can be applied by using adductive 

or deductive reasoning (Cheng et al. 2003, Peischl, 

Wotowa 2003). The adductive approach requires a faulty 

model to interpret the best explanation or the most prob-

able root cause for a fault, while the deductive approach 

requires consistent observation and predictions (Poole 

1989). 

In real world, practical systems of aviation, faults 

may have behaviour that is dynamic and varies over time 

and that requires a proper approach to model the aircraft 

for good fault detection and isolation (Console 1997, 

Rahmani, Stone 1992).   

Also, practical systems may suffer from the need of 

real-time diagnosis of multiple faults, which are quite 

likely to happen in an aircraft. Real-time diagnosis (in-

flight) requires a model that adapts (changes) itself ac-

cording to faults that occur and presents the most possible 

fault according to the new model (Jackson 1997). An-

other practical experience: dealing with multiple faults 

requires statistical methods that reduce the number of 

components those are possibly faulty (Arjunan 1998).  

In a Boeing 777 airplane, the onboard diagnostics 

and maintenance system collects the necessary data for 

FDI by applying a model-based diagnostic model and 

records for future processes (Ramohalli 1992, Felke 

1994).  

The architecture of the aircraft avionics system de-

termines the diagnostic approach by constituting a cen-

tralized or distributed structure such as Boeing versus 

Airbus.  

2. Central maintenance 

Since the very early analogue circuits, avionics have had 

a built-in test (BIT) that continuously monitors the sys-

tem and has the capability to report a failure inside the 

system. The first CMS approach was only collecting BIT 

reports from individual avionics and presenting them in a 

central display to provide a general monitor for flight 

crews. As digital data buses were introduced, CMS 

started to receive continuous BIT reports and performed 

fault isolation (location) analysis to find out the root 

cause among reported faults. The new generation of sys-

tems is expected to detect a fault before its occurrence 

(prognostic) and provide corrective action. A central 

maintenance system, as described in the ARINC 624 

standard, is simply illustrated in figure 1.  

A central maintenance computer receives BIT 

reports and data from Airplane Condition Management 

System (ACMS) sensors and processes them with regard 

to its diagnostic database. The status of the aircraft can be 

seen on Maintenance Access Terminal (MAT) screens in 

the cockpit or on the portable MATs of technicians.  

The basic tasks expected from a CMS are as follows: 

– Identifying the root cause of the problem by trac-

ing the observed effects.  

– Preventing the problem from causing another 

function to fail. 

– Generating advisory warnings to the cockpit. 

– Keeping the necessary fault history and mainte-

nance data for further analysis. 

 



 

 36

 
Fig. 1. Central maintenance system overview 

3. Fault detection, isolation and identification 

Avionics have a large number of interconnections that 

can allow the fault of a single component to propagate 

and cause the failure of other individual components. It is 

therefore essential to analyze the fault reports to find the 

root cause of the problem for proper corrective action or 

repair.  

Fault detection refers to the indication that some-

thing in the system is wrong (without showing the cause). 

Fault detection is a must for practical engineering sys-

tems. Locating the root cause of a fault is called fault 

isolation, and it is essential for the diagnosis of practical 

systems. As a new approach, fault identification refers to 

determine the magnitude of the fault and whether it is 

necessary to take the proper corrective action for the 

fault. An example of detection, isolation and identifica-

tion sequence is given in figure 2.  

 

 

Fig. 2. Detection, isolation and identification for an assumed 

fault scenario 

4. FDI methods 

Model-free methods, such as limit checking, simply com-

pare whether the observed value exceeds a predefined 

limit or uses special sensor that senses individual diag-

nostic data. However, diagnosis of a complicated system 

(such as an aircraft) requires a more complicated tech-

nique (Gertler 1998).  

Model-based diagnosis compares the behaviour ob-

served in the system with a predefined mathematical 

model of the system. The model-based approach has the 

advantage of containing the fault scenarios that can be 

matched with observations in order to conclude a diagno-

sis.  

5. Model-based diagnosis 

In this approach, the system is expected to work correctly 

according to a predicted behaviour. If a fault is detected 

with regard to predefined set of correct behaviour or 

faulty behaviour, then a search for the location of the 

fault is done with regard to predefined set of scenarios 

those can lead to the fault observed. 

It depends on the completeness of the system to de-

fine the predicted behaviour according to faulty or correct 

behaviour. When the model is completely known, deduc-

tive reasoning is used to detect consistent fault scenarios 

that are already defined. On the other hand, adductive 

reasoning can still extract the most probable faults or the 

best explanations for an undefined symptom when the 

model of the system is not completely defined.  

Example 1. Deductive Reasoning: 

It is absolute that the sum of the internal angles of a 

triangle is 180°. This means that the third angle is 40° if 

the other two angles are 80° and 60°. In reference to fig-

ure 3a, the failure and effects can easily be defined for 

such a simplified system that only consists of a lamp and 

a switch. The deductive approach constitutes that if both 

the lamp and the switch are OK, and then there must be 

light. Then, the diagnosis can only be thus: If there is no 

light when the switch is on, either the lamp or the switch 

is faulty. However, it cannot evaluate other effects, which 

are shown in figure 3b, such as the battery is low or the 

cable is not conducting.  

Example 2. Adductive Reasoning: 

In reference to figure 3b, if there is a constraint such 

as the battery has 6 hours of energy and we have a sensor 

to measure it, a more probable diagnosis can be con-

cluded: If the system clock has been operating for 3 

hours, then the battery cannot be low and this leads to the 

diagnosis that the cable might not be conducting. It 

should be noted, however, that this is only the best expla-

nation and not a certain diagnosis.  

 

 

Fig. 3. Examples for a-) deductive and b-) adductive reasoning 

6. Temporal diagnosis 

Obviously, actual systems are generally variable over 

time and have temporal behaviour. Time variance refers 

to components having different types of faults over time 
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and temporal behaviour refers to the effect of a fault after 

a period of time.  

Example 3. Low Oil Pressure (Console 1997):  

A low oil pressure warning in an aircraft can be gen-

erated for two reasons: oil loss (leakage) or oil consump-

tion. The start of a low oil pressure warning should be at 

least 2 hours after the start of oil consumption. Also, oil 

consumption should be at least 2 hours long to cause low 

oil pressure. The formulation in LaTeR language is given 

in the following equation. 
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Consequently, temporal analysis can make the fol-

lowing diagnoses: 

– If Tlop is less than 2 hours, low oil pressure cannot 

be due to oil consumption but might be due to oil 

loss. 

–  If Tlop is between 2 and 4 hours, low oil pressure 

might be due to either oil consumption or oil loss. 

– If Tlop is more than 4 hours, low oil pressure is 

possibly due to oil consumption.  

In temporal diagnosis, it is important to consider the 

necessities of storing the model current situation and us-

ing it when the effect of the fault is observed. This causes 

the need for large memory and the necessity to deal with 

large amount of data that need to be kept while waiting 

for the effect of the fault. 

7. Multiple faults 

The previous approaches considered that only one fault 

could happen in a defined time interval. Real systems 

(especially military aircraft) may suffer from multiple 

faults, however. Multiple faults refer to the faults that are 

not related to each other but have effects on the system in 

the same time interval.  

Dealing with multiple faults requires numerous tests 

(sensors) that support the constraints to make a diagnosis. 

Statistical techniques are therefore applied to reduce the 

number of fault possibilities that need to be tested. Con-

sequently, the diagnosis process is more efficient by sav-

ing memory and speed.  

In a commercial airliner, it is not likely that two un-

related faults would occur at the same interval thanks to 

redundant systems. Military aircraft, however, may suffer 

from difficult flying conditions (hard landings, dust, 

over-speed, etc.) or anti-aircraft fire and might therefore 

have multiple faults (Fig. 4). Their CMS should re-

spond/adapt the aircraft immediately. 

 

 

Fig. 4. A-10 military aircraft hit by small-arms fire  

8. Real-time diagnosis 

Presently, aircraft diagnosis generally aims at producing a 

health status for maintenance purposes by collecting and 

analyzing large amount of data. Diagnosis can be very 

critical, however, in emergency situations during flight 

when multiple fault warnings are generated and immedi-

ate action is required for flight safety. The CMS should 

therefore generate corrective actions or provide advice 

concerning troubleshooting in order to help the flight 

crew take a decision.  

In real-time model-based diagnosis, when a fault oc-

curs, the system should save instance, adapt the model for 

a new situation (faulty), and evaluate the next fault ac-

cording to the newly adapted model. Human intervention 

should be considered according to the task of the diagno-

sis, that is to say the complexity of advisory information 

that needs to be presented to the flight crew. The system 

should rank the possible faults according to the diagnosis. 

9. Dependence on aircraft ideology 

Even though both Boeing and Airbus produce aircraft 

with correspondent systems for almost the same pur-

poses, their approaches to aircraft structure differ. The 

main difference between Boeing and Airbus structures is 

the use of data buses (except for Airbus A 380, which 

uses a centralized approach).  

Boeing 777 uses centralized common multi-point 

ARINC 629 data buses, which are called systems buses 

(four) and flight control buses (three), and also a number 

of point-to-point ARINC 429 data buses (Fig. 5). The 

data collecting function is carried out by an airplane in-

formation and management system (AIMS) in which all 

avionics share the same sources such as power supply, 

I/O ports, processors, common software, etc.  

In the Airbus approach (Fig. 6), systems are con-

nected through point-to-point ARINC 429 data buses and 

with some analogue connections. This means that sys-

tems may have only a single connection with each other. 

Also, two central maintenance computers themselves 

perform the data collection function. Individual avionics 

have their own computerized components and sources. 
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Fig. 5. Central maintenance system of Boeing 777 

 

 

Fig. 6. Central maintenance system of Airbus A 330/340  

 

The centralized approach of Boeing 777 AIMS 

eventually makes it easier to detect a fault since the 

common sources of avionics are assembled together. 

Multi-point ARINC 629 data buses provide flexibility in 

re-directing (by-passing) faulty lines after fault detection. 

In Airbus CMS, all avionics individually send their fault 

reports through a dedicated ARINC 429 line. This may 

increase the workload on FDI due to the high amount of 

data from different sources and the possibility of miscon-

nections. 

10. Conclusions 

1. Model-based diagnosis can work efficiently if the 

structure size of the system is modelled according 

to the diagnostic task. A large model provides ac-

curacy in diagnosis in maintenance thanks to 

many defined symptoms, but this causes a slow 

speed in real-time diagnosis due to the high num-

ber of symptoms those should be checked. 

2. The temporal behaviour of faults should be con-

sidered carefully while modelling the system. A 

very dynamic model would be hard to design and 

maintain.   

3. The occurrence of multiple and unrelated faults is 

important to consider for the model-based diag-

nosis of military aircraft. 

4. The architecture of an aircraft avionics system 

(centralized or distributed) plays an important 

role in determining the diagnostic approach.  
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